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Abstract 

The increasing complexity of interdependent infrastructure networks has heightened the 

vulnerability of critical systems to cascading failures, where disruptions in one network trigger 

widespread consequences across others. Graph Neural Networks (GNNs) have emerged as a 

powerful tool to model these complex interdependencies, offering promising applications in failure 

prediction and resilience enhancement. This chapter explores the application of GNNs in modeling 

cascading failures within interdependent networks, focusing on their ability to capture spatial, 

temporal, and dynamic relationships between various network components. Key challenges in 

collecting large-scale, high-quality data for GNN-based models are addressed, with a particular 

emphasis on overcoming issues related to data completeness, scalability, and real-time 

adaptability. Additionally, the chapter examines hybrid modeling approaches, integrating GNNs 

with traditional simulation techniques to improve the accuracy and robustness of failure 

propagation predictions. Through case studies and recent advancements, this work demonstrates 

how GNNs can be leveraged to better understand, predict, and mitigate cascading failures in 

critical infrastructure. The integration of GNNs into existing frameworks for failure prediction 

offers an innovative pathway toward building more resilient infrastructure systems in an 

increasingly interconnected world. 
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Introduction 

The vulnerability of interdependent infrastructure networks to cascading failures has become 

an increasing concern in modern society [1]. These networks, which include power grids, 

transportation systems, communication networks, and water supply systems, are interconnected 

and often rely on shared resources and common pathways [2]. A disruption in one network 

component can trigger a chain reaction, affecting other components in unexpected ways [3]. The 

complexities associated with understanding the propagation of these failures have made it difficult 

to develop reliable models that predict failure sequences and system responses [4]. Traditional 

approaches, such as system dynamics models and agent-based simulations, have been useful in 
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analyzing such failures; often fail to capture the intricate relationships that exist between different 

infrastructure domains [5]. In this context, new methodologies that can handle the complexities of 

these interconnected systems are needed [6]. 

Graph Neural Networks (GNNs) have emerged as a promising tool for addressing these 

challenges [7]. GNNs excel at modeling complex, relational data, making them highly effective in 

simulating the interactions between various nodes and edges in a network [8]. By learning from 

large-scale historical data, GNNs can dynamically model the behavior of infrastructure networks, 

accounting for both spatial and temporal dependencies [9]. This capability makes them an ideal 

choice for studying cascading failures, where disruptions in one part of the network propagate to 

others in a nonlinear fashion [10]. GNNs also offer advantages in their ability to generalize across 

different network types, providing flexibility in applying the same methodology to various types 

of interdependent systems [11].  

One of the primary challenges in applying GNNs to interdependent infrastructure networks was 

the need for large-scale, high-quality data [12]. Infrastructure systems are dynamic, with frequent 

changes in load, operational status, and environmental factors [13]. Collecting real-time data that 

accurately reflects the state of the system was essential for training GNN models [14]. The data 

was often sparse, incomplete, or inconsistent due to limitations in sensor coverage, sensor 

malfunctions, or communication issues between components [15]. These data quality issues can 

hinder the ability of GNNs to make accurate predictions and can lead to unreliable failure 

propagation models [16]. To overcome this challenge, efforts must be made to enhance data 

collection infrastructure, improve sensor technology, and implement more sophisticated data 

processing techniques, such as data imputation or anomaly detection, to handle missing or 

inconsistent data. 

 


